BYM56C

SINTERED GLASS JUNCTION AVALANCHE RECTIFIER

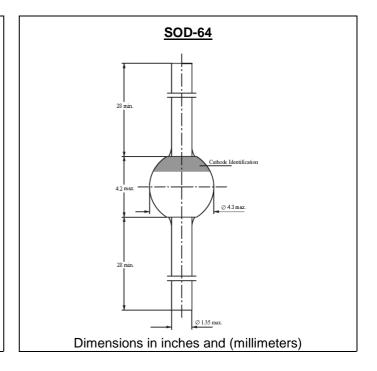
VOLTAGE: 600V CURRENT: 3.5A

FEATURE

Glass passivated
High maximum operating temperature
Low leakage current
Excellent stability

Guaranteed avalanche energy absorption capability

MECHANICAL DATA


Case: SOD-64 sintered glass case

Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Polarity: color band denotes cathode end

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

		I	T	
		SYMBOL	BYM56C	units
Maximum Recurrent Peak Reverse Voltage		V _{RRM}	600	V
Maximum RMS Voltage		V_{RMS}	420	V
Maximum DC blocking Voltage		V_{DC}	600	V
Reverse avalanche breakdown voltage at IR = 0.1 mA		$V_{(BR)R}$	650min	V
Maximum Average Forward Rectified Current 3/8"lead length at Ttp =60°C		I _{FAV}	3.5	А
Non-repetitive Peak Forward Surge Current at Tp=10ms half sinewave		I _{FSM}	80	А
Maximum Forward Voltage at 3A and 25℃		V_{F}	1.15	V
Non-repetitive peak reverse avalanche energy (Note 1)		E _{RSM}	20	mJ
Maximum DC Reverse Current at rated DC blocking voltage	Ta =25°C Ta =165°C	I _R	1.0 150.0	μА
Diode Capacitance	(Note 2)	C _d	90	pF
Typical Thermal Resistance	(Note 3)	R _{th(ja)}	75	°C /v
Storage and Operating Junction Temperature		Tstg, Tj	-65 to +175	°C

Note:

- 1. L=120mH; Tj=Tjmax prior to surge; inductive load switched off
- 2. Measured at 1.0 MHz and applied reverse voltage of 0Vdc
- 3. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick

Rev.A1 www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYM56C

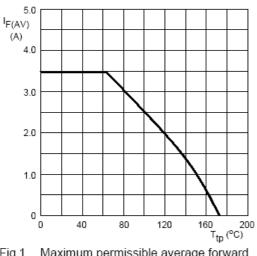


Fig.1 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

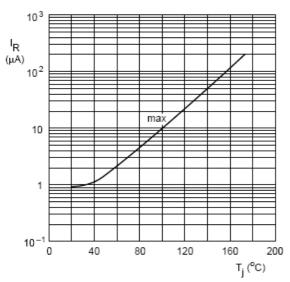


Fig.3 Reverse current as a function of junction temperature; maximum values.

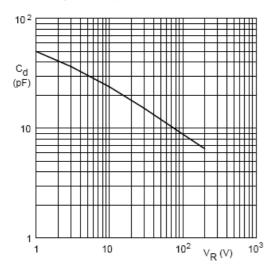


Fig.5 Diode capacitance as a function of reverse voltage; typical values.

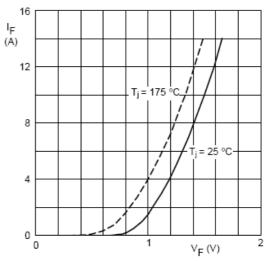


Fig.2 Forward current as a function of forward voltage; maximum values.

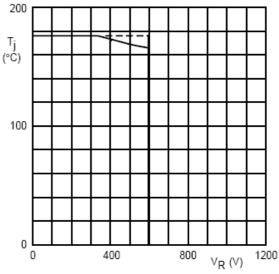


Fig.4 Maximum permissible junction temperature as a function of reverse voltage.

Rev.A1 www.gulfsemi.com